Area-Efficient Realization of Binary Elliptic Curve Point Multiplication Processor for Cryptographic Applications

Author:

Aljaedi Amer1ORCID,Jamal Sajjad Shaukat2ORCID,Rashid Muhammad3ORCID,Alharbi Adel R.1ORCID,Alotaibi Mohammed4,Alanazi Dalal J.5

Affiliation:

1. College of Computing and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia

2. Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia

3. Department of Computer Engineering, Umm Al-Qura University, Makkah 21955, Saudi Arabia

4. Department of Management Information Systems, College of Business Administration, University of Tabuk, Tabuk 71491, Saudi Arabia

5. Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia

Abstract

This paper proposes a novel hardware design for a compact crypto processor devoted to elliptic-curve point multiplication over GF(2233). We focus on minimizing hardware usage, which we obtain using an iterative bit–serial finite field modular multiplier for polynomial coefficient multiplication. The same multiplier is also used for modular squares and inversion computations, further optimizing the hardware footprint. Our design offers flexibility by permitting users to load different curve parameters and secret keys while keeping a low-area hardware design. To efficiently generate the control signals, we utilize a finite-state-machine-based controller. We have implemented the proposed crypto processor on Virtex-6 and Virtex-7 FPGA devices, and we have evaluated its performance at clock frequencies of 100, 50, and 10 MHz. Specifically, for one point multiplication computation on Virtex-7 FPGA, our crypto processor uses 391 slices, attains a maximum frequency of 161 MHz, has a latency of 4.45 ms, and consumes 77 mW of power. These results, along with a comparison to state-of-the-art designs, clearly demonstrate the practicality of our crypto processor for applications requiring efficient and compact cryptographic computations.

Funder

Deanship of Scientific Research at University of Tabuk

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3