Flow Table Saturation Attack against Dynamic Timeout Mechanisms in SDN

Author:

Shen Yi1,Wu Chunming1,Kong Dezhang1,Cheng Qiumei1

Affiliation:

1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China

Abstract

Software-defined networking (SDN) enables dynamic management and flexible network control by employing reactive rule installation. Due to high power consumption and cost, current OpenFlow switches only support a limited number of flow rules, which is a major limitation for deploying massive fine-grained policies. This bottleneck can be exploited by attackers to launch saturation attacks to overflow the flow table. Moreover, flow table overflow can occur in the absence of malicious attackers. To cope with this, researchers have developed many proposals to relieve the load under benign conditions. Among them, the dynamic timeout mechanism is one of the most effective solutions. We notice that when the SDN controller adopts dynamic timeouts, existing flow table saturation attacks can fail, or even expose the attackers, due to inaccurate inferring results. In this paper, we extract the common features of dynamic timeout strategies and propose an advanced flow table saturation attack. We explore the definition of flow rule lifetime and use a timing-based side-channel to infer the timeout of flow rules. Moreover, we leverage the dynamic timeout mechanisms to proactively interfere with the decision of timeout values and perform an attack. We conduct extensive experiments in various settings to demonstrate its effectiveness. We also notice that some replacement strategies work differently when the controller assigns dynamic timeouts. The experiment results show that the attack can incur significant network performance degradation and carry out the attack in a stealthy manner.

Funder

National Key R&D Program of China

the Key R&D Program of Zhejiang Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3