Performance Evaluation of Stateful Firewall-Enabled SDN with Flow-Based Scheduling for Distributed Controllers

Author:

P. SenthilORCID,Kavin Balasubramanian PrabhuORCID,Srividhya S. R.ORCID,V. Ramachandran,C. KavithaORCID,Lai Wen-ChengORCID

Abstract

Software-defined networking (SDN) is a network approach achieved by decoupling of the control and data planes. The control plane is logically centralized and the data plane is distributed across the network elements. The real-time network is in need of the incorporation of distributed controllers to maintain distributed state information of the traffic flows. Software-based solutions aid distributed SDN controllers to handle fluctuating network traffic and the controller’s configurations are dynamically programmed in real time. In this study, SDN controllers were programmed with a stateful firewall application to provide firewall functionalities without the support of committed hardware. A stateful firewall filtered traffic based on the complete context of incoming packets; it continuously evaluated the entire context of traffic flows, looking for network entry rather than specific traffic flows. In addition, a flow-based scheduling module was implemented in the distributed controllers to improve network scalability. A network cluster was configured with three distributed controllers and we experimented with three independent network topologies. The performance of the proposed network model was evaluated by measuring and analyzing metrics such as network throughput (kbps), delay (ms) and network overhead (pkt/ms) for various combinations of controllers and topologies. The results of the analysis were determined using the mininet emulator. The findings of the performance evaluation indicate that the distributed SDN controllers performs better than a centralized controller. When comparing distributed SDN with two controllers and distributed SDN with three controllers the overall network throughput is increased by 64%, the delay is decreased by 43% and network overhead is reduced by 39%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3