Spatial Correlation Network Structure of Carbon Emission Efficiency in China’s Construction Industry and Its Formation Mechanism

Author:

Gao Haidong12,Li Tiantian12,Yu Jing12,Sun Yangrui12,Xie Shijie3

Affiliation:

1. State Key Laboratory of Northwest Arid Zone Ecological Water Resources, Xi’an University of Technology, Xi’an 710048, China

2. School of Civil Engineering and Construction, Xi’an University of Technology, Xi’an 710048, China

3. School of Civil Engineering, Southeast University, Nanjing 210096, China

Abstract

In the context of “carbon peak, carbon neutrality”, it is important to explore the spatial correlation network of carbon emission efficiency in the construction industry and its formation mechanism to promote regional synergistic carbon emission reduction. This paper analyzes the spatial correlation network of carbon emission efficiency in China’s construction industry and its formation mechanism through the use of the global super-efficiency EBM model, social network analysis, and QAP model. The results show that (1) the national construction industry’s overall carbon emission efficiency is steadily increasing, with a spatial distribution pattern of “high in the east and low in the west”. (2) The spatial correlation network shows a “core edge” pattern. Provinces such as Jiangsu, Zhejiang, Shanghai, Tianjin, and Shandong are at the center of the network of carbon emission efficiency in the construction industry, playing the role of “intermediary” and “bridge”. At the same time, the spatial correlation network is divided into four plates: “bidirectional spillover plate”, “main inflow plate”, “main outflow plate”, and “agent plate”. (3) Geographical proximity, regional economic differences, and urbanization differences have significant positive effects on the formation of a spatial correlation network. At the same time, the industrial agglomeration gap has a significant negative impact on the formation of such a network, while energy-saving technology level and labor productivity differences do not show any significant effect.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3