Dynamics and Decoupling Analysis of Carbon Emissions from Construction Industry in China

Author:

Zhang Ping,Hu Jing,Zhao KaixuORCID,Chen Hua,Zhao Sidong,Li Weiwei

Abstract

The construction industry is the backbone of most countries, but its carbon emissions are huge and growing rapidly, constraining the achievement of global carbon-peaking and carbon-neutrality goals. China’s carbon emissions are the highest in the world, and the construction industry is the largest contributor. Due to significant differences between provinces in pressure, potential, and motivation to reduce emissions, the “one-size-fits-all” emission reduction policy has failed to achieve the desired results. This paper empirically investigates the spatial and temporal evolution of carbon emissions in China’s construction industry and their decoupling relationship with economic growth relying on GIS tools and decoupling model in an attempt to provide a basis for the formulation of differentiated construction emission reduction policies and plans in China. The study shows that, firstly, the changes in carbon emissions and carbon intensity in the provincial construction industry are becoming increasingly complex, with a variety of types emerging, such as declining, “inverted U-shaped”, growing, “U-shaped”, and smooth fluctuating patterns. Secondly, the coefficient of variation is higher than 0.65 for a long time, indicating high spatial heterogeneity. However, spatial agglomeration and correlation are low, with only a few cluster-like agglomerations formed in the Pearl River Delta, Yangtze River Delta, Bohai Bay, Northeast China, and Loess and Yunnan–Guizhou Plateau regions. Thirdly, most provinces have not reached peak carbon emissions from the construction industry, with 25% having reached peak and being in the plateau stage, respectively. Fourthly, the decoupling relationship between carbon emissions from the construction industry and economic growth, as well as their changes, is increasingly diversified, and most provinces are in a strong and weak decoupling state. Moreover, a growing number of provinces that have achieved decoupling are moving backward to re-coupling, due to the impact of economic transformation and the outbreaks of COVID-19, with the degraded regions increasingly concentrated in the northeast and northwest. Fifthly, we classify China’s 30 provinces into Leader, Intermediate, and Laggard policy zones and further propose differentiated response strategies. In conclusion, studying the trends and patterns of carbon-emission changes in the construction industry in different regions, revealing their spatial differentiation and correlation, and developing a classification management strategy for low carbonized development of the construction industry help significantly improve the reliability, efficiency, and self-adaptability of policy design and implementation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3