A Rapid and Affordable Screening Tool for Early-Stage Ovarian Cancer Detection Based on MALDI-ToF MS of Blood Serum

Author:

Pais Ricardo J.ORCID,Zmuidinaite RamintaORCID,Lacey Jonathan C.,Jardine Christian S.,Iles Ray K.

Abstract

Ovarian cancer is a worldwide health issue that grows at a rate of almost 250,000 new cases every year. Its early detection is key for a good prognosis and even curative surgery. However, current medical examination methods and tests have been inefficient in detecting ovarian cancer at the early stage, leading to preventable death. So far, new screening tests based on molecular biomarker analysis techniques have not resulted in any substantial improvement in early-stage diagnosis and increased survival. Thus, whilst there remains clear potential to improve outcomes through early detection, novel approaches are needed. Here, we postulated that MALDI-ToF-mass-spectrometry-based tests can be a solution for effective screening of ovarian cancer. In this retrospective cohort study, we generated and analyzed the mass spectra of 181 serum samples of women with and without ovarian cancer. Using bioinformatics pipelines for analysis, including predictive modeling and machine learning, we found distinct mass spectral patterns composed of 9–20 key combinations of peak intensity or peak enrichment features for each stage of ovarian cancer. Based on a scoring algorithm and obtained patterns, the optimal sensitivity for detecting each stage of cancer was 95–97% with a specificity of 97%. Scoring all algorithms simultaneously could detect all stages of ovarian cancer at 99% sensitivity and 92% specificity. The results further demonstrate that the matrix and mass range analyzed played a key role in improving the mass spectral data quality and diagnostic power. Altogether, with the results reported here and increasing evidence of the MS assay’s diagnostic accuracy and instrument robustness, it has become imminent to consider MS in the clinical application for ovarian cancer screening.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3