Facilitating “Omics” for Phenotype Classification Using a User-Friendly AI-Driven Platform: Application in Cancer Prognostics

Author:

Filho Uraquitan Lima1,Pais Tiago Alexandre2,Pais Ricardo Jorge23ORCID

Affiliation:

1. URA Informatics Ltd., 103 Oxford House Oxford Road, Manchester M1 7ED, UK

2. Bioenhancer Systems Ltd., Office 63 182-184 High Street North, East Ham, London E6 2JA, UK

3. Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health & Science, 2829-511 Almada, Portugal

Abstract

Precision medicine approaches often rely on complex and integrative analyses of multiple biomarkers from “omics” data to generate insights that can help with either diagnostic, prognostic, or therapeutical decisions. Such insights are often made using machine learning (ML) models that perform sample classification for a particular phenotype (yes/no). Building such models is a challenge and time-consuming, requiring advanced coding skills and mathematical modelling expertise. Artificial intelligence (AI) is a methodological solution that has the potential to facilitate, optimize, and scale model development. In this work, we developed an AI-based, user-friendly, and code-free platform that fully automated the development of predictive models from quantitative “omics” data. Here, we show the application of this tool with the development of cancer survival prognostics models using real-life data from breast, lung, and renal cancer transcriptomes. In comparison to other models, our generated models rendered performances with competitive sensitivities (72–85%), specificities (76–85%), accuracies (75–85%), and Receiver Operating Characteristic curves with superior Areas Under the Curve (ROC-AUC of 77–86%). Further, we reported the associated sets of genes (biomarkers) and their expression patterns that were predictive of cancer survival. Moreover, we made our models available as online tools to generate prognostic predictions based on the gene expressions of the biomarkers. In conclusion, we demonstrated that our tool is a robust, user-friendly solution for developing bespoke predictive tools from “omics” data, which facilitate precision medicine applications to the point-of-care.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3