Abstract
The efficiency in water treatment by granulated complexes formed from the clay bentonite with (i) micelles of the cations of octadecyltrimethyl-ammonium (ODTMA) or (ii) liposomes of didodecyldimethyl-ammonium (DDAB) was investigated. The bentonite–ODTMA complexes were synthesized in three variations: I. mass ratio of 68/32, which resulted in an excess of positive charge of half of the clay cation exchange capacity and is denoted “ordinary”; II. complexes having higher loads of ODTMA, denoted “enriched”; and III. “neutral”. These variations were designed to optimize the efficiency and reduce the costs of water treatment. “Ordinary” and “neutral” complexes of DDAB were also synthesized. The “ordinary” complex of ODTMA was shown to be efficient in the removal of anionic/hydrophobic molecules and bacteria. The “enriched” complexes were more active in removal of bacteria from water by filtration due to the higher release of free ODTMA cations, which causes biostatic/biocidal effects. The corresponding “ordinary” and “neutral” complexes of ODTMA and DDAB yielded the same efficiency in removal from water of the neutral and hydrophobic herbicides, S-metolachlor (i) and alachlor (ii), respectively. Model calculations, which considered sorption/desorption and convection yielded simulations and predictions of filtration results of the herbicides. The neutral complexes are advantageous since their production saves about 1/3 of the amount of ODTMA or DDAB, which constitutes the expensive component in the respective composite.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献