Removal of Emerging Contaminants by Degradation during Filtration: A Review of Experimental Procedures and Modeling

Author:

Undabeytia Tomás1ORCID,Jiménez-Barrera José Manuel1,Nir Shlomo2

Affiliation:

1. Instituto de Recursos Naturales y Agrobiologia, CSIC-IRNAS, Reina Mercedes 10, 41012 Sevilla, Spain

2. The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel

Abstract

Here, we review the efficient removal of organic micropollutants from water by degradation during filtration using specialized bacteria and enzymes. In both approaches, the filter provides essential binding sites where efficient degradation can occur. A model is presented that enables the simulation and prediction of the kinetics of filtration for a given pollutant concentration, flow rate, and filter dimensions and can facilitate the design of experiments and capacity estimates; it predicts the establishment of a steady state, during which the emerging concentrations of the pollutants remain constant. One method to remove cyanotoxins produced by Microcystis cyanobacteria, which pose a threat at concentrations above 1.0 µg L−1, is to use an activated granular carbon filter with a biofilm; this method resulted in the complete removal of the filtered toxins (5 µg L−1) during a long experiment (225 d). This system was analyzed using a model which predicted complete toxin removal when applied at a 10-fold-higher concentration. Enzymes are also used in filtration processes for the degradation of trace organic contaminants, mostly through the use of membrane bioreactors, where the enzyme is continuously introduced or maintained in the bioreactor, or it is immobilized on the membrane.

Funder

Instituto de Recursos Naturales y Agrobiología, CSIC-IRNAS

Hebrew University of Jerusalem

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3