Abiotic Stress Upregulates the Expression of Genes Involved in PSV and Autophagy Routes

Author:

Neves João,Séneca Ana,Pereira SusanaORCID,Pissarra JoséORCID,Pereira CláudiaORCID

Abstract

Adverse conditions caused by abiotic stress modulate plant development and growth by altering morphological and cellular mechanisms. To face this problem, plants, along with physiological adaptations, developed intracellular mechanisms, including changes in protein production and trafficking or modifications of the endomembrane system. It is known that stress situations can alter protein sorting to the vacuole, changing their routes via a Golgi-independent pathway. Our goal is to evaluate the expression levels of different aspartic proteinases and well-characterized genes involved in the vacuolar pathway, in plants submitted to different abiotic stresses (osmotic, oxidative, saline and heavy metals). The results obtained point to a different response of the three aspartic proteinases under study, indicating that different, yet related, genes respond differently to different types of stress, resulting in a fine-tuned regulation. Furthermore, our results regarding the endomembrane system effectors show that AtEXO70, AtRMR1, AtSYP51, AtSYP121 and AtVTI12 are up-regulated, while AtVAMP, AtSYP23 and AtBP80 are downregulated in the same situations. This demonstrates that adverse conditions caused by abiotic stress can alter the expression of key proteins involved in the protein trafficking machinery, which can be related to the activation/deactivation of certain pathways.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3