Effects of Oxide Additives on the Phase Structures and Electrical Properties of SrBi4Ti4O15 High-Temperature Piezoelectric Ceramics

Author:

Wang Shaozhao,Zhou HuajiangORCID,Wu Daowen,Li Lang,Chen Yu

Abstract

In this work, SrBi4Ti4O15 (SBT) high-temperature piezoelectric ceramics with the addition of different oxides (Gd2O3, CeO2, MnO2 and Cr2O3) were fabricated by a conventional solid-state reaction route. The effects of oxide additives on the phase structures and electrical properties of the SBT ceramics were investigated. Firstly, X-ray diffraction analysis revealed that all these oxides-modified SBT ceramics prepared presented a single SrBi4Ti4O15 phase with orthorhombic symmetry and space group of Bb21m, the change in cell parameters indicated that these oxide additives had diffused into the crystalline lattice of SBT and formed solid solutions with it. The SBT ceramics with the addition of MnO2 achieved a high relative density of up to 97%. The temperature dependence of dielectric constant showed that the addition of Gd2O3 could increase the TC of SBT. At a low frequency of 100 Hz, those dielectric loss peaks appearing around 500 °C were attributed to the space-charge relaxation as an extrinsic dielectric response. The synergetic doping of CeO2 and Cr2O3 could reduce the space-charge-induced dielectric relaxation of SBT. The piezoelectricity measurement and electro-mechanical resonance analysis found that Cr2O3 can significantly enhance both d33 and kp of SBT, and produce a higher phase-angle maximum at resonance. Such an enhanced piezoelectricity was attributed to the further increased orthorhombic distortion after Ti4+ at B-site was substituted by Cr3+. Among these compositions, Sr0.92Gd0.053Bi4Ti4O15 + 0.2 wt% Cr2O3 (SGBT-Cr) presented the best electrical properties including TC = 555 °C, tan δ = 0.4%, kp = 6.35% and d33 = 28 pC/N, as well as a good thermally-stable piezoelectricity that the value of d33 was decreased by only 3.6% after being annealed at 500 °C for 4 h. Such advantages provided this material with potential applications in the high-stability piezoelectric sensors operated below 500 °C.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3