Boosting of Magnetic, Ferroelectric, Energy Storage Efficiency, and Piezoelectric Properties of Zn Intercalated SrBi4Ti4O15-Based Ceramics

Author:

Jabeen NawishtaORCID,Rehman Altaf Ur,Hassan Najam UlORCID,Qaiser Muhammad Adnan,Zaidi Anum,Khan Muhammad Usman,Khan Imtiaz Ahmad,Nouman Muhammad

Abstract

An appropriate amount of Zn-ions are incorporated into the high Curie temperature bismuth layer-structure ferroelectric material to fabricate Sr0.2Na0.4Pr0.4Bi4Ti4O15:xwt%ZnO; (SNPBT:xZn), with x = 0, 0.10, 0.15, and 0.20 ceramic series to investigate the magnetic, ferroelectric, and energy storage efficiency and piezoelectric properties. Pure SNPBT and SNPBT:xZn ceramics have maintained their structure even after the intercalation of Zn-ions at the lattice sites of SNPBT. The addition of ZnO in SNPBT has improved the multifunctional properties of the material at x = 0.15. At room temperature, SNPBT:0.15Zn has shown a high relative density of 96%, exhibited weak ferromagnetic behavior along with a low saturation magnetization (Ms) of 0.028 emu/g with a low coercive field of 306 Oe, a high remnant polarization (Pr) of 9.04 µC/cm2, a recoverable energy density (Wrec) of ~0.5 J/cm3, an energy conversion efficiency (η) of ~41%, a high piezoelectric co-efficient (d33) of 21 pC/N, and an impedance of 1.98 × 107 Ω, which are much improved as compared to pure SBT or pure SNPBT ceramics. Dielectric Constant (ɛr) versus temperature plots present the sharp peak for SNPBT:0.15Zn ceramic at a Curie temperature (TC) ~ 605 °C, confirming the strong ferroelectric nature of the ceramic. Moreover, SNPBT:0.15Zn ceramic has shown strong, piezoelectric, thermally stable behavior, which remains at 76% (16 pC/N) of its initial value even after annealing at 500 °C. The achieved results clearly indicate that SNPBT:0.15Zn ceramic is a promising candidate for future wide-temperature pulse power applications and high-temperature piezoelectric devices.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3