Engineering of Vaginal Lactobacilli to Express Fluorescent Proteins Enables the Analysis of Their Mixture in Nanofibers

Author:

Stojanov Spase,Plavec Tina Vida,Kristl JulijanaORCID,Zupančič ŠpelaORCID,Berlec AlešORCID

Abstract

Lactobacilli are a promising natural tool against vaginal dysbiosis and infections. However, new local delivery systems and additional knowledge about their distribution and mechanism of action would contribute to the development of effective medicine. This will be facilitated by the introduction of the techniques for effective, inexpensive, and real-time tracking of these probiotics following their release. Here, we engineered three model vaginal lactobacilli (Lactobacillus crispatus ATCC 33820, Lactobacillus gasseri ATCC 33323, and Lactobacillus jensenii ATCC 25258) and a control Lactobacillus plantarum ATCC 8014 to express fluorescent proteins with different spectral properties, including infrared fluorescent protein (IRFP), green fluorescent protein (GFP), red fluorescent protein (mCherry), and blue fluorescent protein (mTagBFP2). The expression of these fluorescent proteins differed between the Lactobacillus species and enabled quantification and discrimination between lactobacilli, with the longer wavelength fluorescent proteins showing superior resolving power. Each Lactobacillus strain was labeled with an individual fluorescent protein and incorporated into poly (ethylene oxide) nanofibers using electrospinning, as confirmed by fluorescence and scanning electron microscopy. The lactobacilli retained their fluorescence in nanofibers, as well as after nanofiber dissolution. To summarize, vaginal lactobacilli were incorporated into electrospun nanofibers to provide a potential solid vaginal delivery system, and the fluorescent proteins were introduced to distinguish between them and allow their tracking in the future probiotic-delivery studies.

Funder

Slovenian Research Agency

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3