MEK6 Overexpression Exacerbates Fat Accumulation and Inflammatory Cytokines in High-Fat Diet-Induced Obesity

Author:

Lee Suyeon,Lee MyoungsookORCID

Abstract

Obesity is a state of abnormal fat accumulation caused by an energy imbalance potentially caused by changes in multiple factors. MEK6 engages in cell growth, such as inflammation and apoptosis, as one of the MAPK signaling pathways. The MEK6 gene was found to be related to RMR, a gene associated with obesity. Because only a few studies have investigated the correlation between MEK6 and obesity or the relevant mechanisms, we conducted an experiment using a TgMEK6 model with MEK6 overexpression with non-Tg and chow diet as the control to determine changes in lipid metabolism in plasma, liver, and adipose tissue after a 15-week high-fat diet (HFD). MEK6 overexpression in the TgMEK6 model significantly increased body weight and plasma triglyceride and total cholesterol levels. p38 activity declined in the liver and adipose tissues and lowered lipolysis, oxidation, and thermogenesis levels, contributing to decreased energy consumption. In the liver, lipid formation and accumulation increased, and in adipose, adipogenesis and hypertrophy increased. The adiponectin/leptin ratio significantly declined in plasma and adipose tissue of the TgMEK6 group following MEK6 expression and the HFD, indicating the role of MEK6 expression in adipokine regulation. Plasma and bone-marrow-derived macrophages (BMDM) of the TgMEK6 group increased MEK6 expression-dependent secretion of pro-inflammatory cytokines but decreased levels of anti-inflammatory cytokines, further exacerbating the results exhibited by the diet-induced obesity group. In conclusion, this study demonstrated the synergistic effect of MEK6 with HFD in fat accumulation by significantly inhibiting the mechanisms of lipolysis in the adipose and M2 associated cytokines secretion in the BMDM.

Funder

Korean Health Technology R&D project, Ministry of Health&Welfare,

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3