Design and Modeling of MEMS Microgrippers for Laser-Based Additive Manufacturing

Author:

De Pasquale GiorgioORCID

Abstract

The geometrical constraints and dimensional tolerances lead to specific design issues of MEMS manipulators for biological applications. The target properties become even more important in the case of in vitro manipulation of cells. Several design solutions have been proposed in the literature, however, some issues related to the thermal heating of microgripper tips and to the electric voltage effects still remain unsolved. This paper reports the design for additive manufacturing (DFAM) of micro-electro mechanical systems (MEMS) microgrippers. The design limitations imposed by the micro-stereolithography fabrication process are considered. The design solution proposed in this study is based on compliant structures and external actuation; this layout provides the potential elimination of the main issues related to cells micro-manipulators represented by the excessive thermal heating and the voltage exposure of samples. The simulation through finite elements method (FEM) models of the structure in terms of force–displacement relation and stress distribution supports the design evolution proposed.

Publisher

MDPI AG

Subject

Earth-Surface Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3