Abstract
Technology advancements in wireless communication and embedded computing are fostering their evolution from standalone elements to smart objects seamlessly integrated in the broader context of the Internet of Things. In this context, wearable sensors represent the building block for new cyber-physical social systems, which aim at improving the well-being of people by monitoring and measuring their activities and provide an immediate feedback to the users. In this paper, we introduce ePhysio, a large-scale and flexible platform for sensor-assisted physiotherapy and remote management of musculoskeletal diseases. The system leverages networking and computing tools to provide real-time and ubiquitous monitoring of patients. We propose three use cases which differ in scale and context and are characterized by different human interactions: single-user therapy, indoor group therapy, and on-field therapy. For each use case, we identify the social interactions, e.g., between the patient and the physician and between different users and the performance requirements in terms of monitoring frequency, communication, and computation. We then propose three related deployments, highlighting the technologies that can be applied in a real system. Finally, we describe a proof-of-concept implementation, which demonstrates the feasibility of the proposed solution.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献