Abstract
Recent developments in commutative algebra, linear algebra, and graph theory allow us to approach various issues in several fields. Circulant graphs now have a wider range of practical uses, including as the foundation for optical networks, discrete cellular neural networks, small-world networks, models of chemical reactions, supercomputing and multiprocessor systems. Herein, we are concerned with the decompositions of the bipartite circulant graphs. We propose the Cartesian and tensor product approaches as helping tools for the decompositions. The proposed approaches enable us to decompose the bipartite circulant graphs into many categories of graphs. We consider the use cases of applying the described theory of bipartite circulant graph decomposition to the problems of finding new topologies and deadlock-free routing in them when building supercomputers and networks-on-chip.
Funder
Basic Research Program at the National Research University Higher School of Economics
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献