Distributed Average Consensus Algorithms in d-Regular Bipartite Graphs: Comparative Study

Author:

Kenyeres Martin1ORCID,Kenyeres Jozef2

Affiliation:

1. Institute of Informatics, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 07 Bratislava, Slovakia

2. Frequentis AG, Innovationsstraße 1, 1100 Vienna, Austria

Abstract

Consensus-based data aggregation in d-regular bipartite graphs poses a challenging task for the scientific community since some of these algorithms diverge in this critical graph topology. Nevertheless, one can see a lack of scientific studies dealing with this topic in the literature. Motivated by our recent research concerned with this issue, we provide a comparative study of frequently applied consensus algorithms for distributed averaging in d-regular bipartite graphs in this paper. More specifically, we examine the performance of these algorithms with bounded execution in this topology in order to identify which algorithm can achieve the consensus despite no reconfiguration and find the best-performing algorithm in these graphs. In the experimental part, we apply the number of iterations required for consensus to evaluate the performance of the algorithms in randomly generated regular bipartite graphs with various connectivities and for three configurations of the applied stopping criterion, allowing us to identify the optimal distributed consensus algorithm for this graph topology. Moreover, the obtained experimental results presented in this paper are compared to other scientific manuscripts where the analyzed algorithms are examined in non-regular non-bipartite topologies.

Funder

Slovak Scientific Grand Agency VEGA

Slovak Research and Development Agency

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3