Author:
Nosbi Norlin,Ahmad Marzuki Haslan Fadli,Zakaria Muhammad Razlan,Wan Ali Wan Fahmin Faiz,Javed Fatima,Ibrar Muhammad
Abstract
The limited shelf life of carbon prepreg waste (CPW) from component manufacturing restricts its use as a composite reinforcement fibre on its own. However, CPW can be recycled with glass fibre (GF) reinforcement to develop a unique remediate material. Therefore, this study fabricated (1) a glass fibre-carbon prepreg waste reinforced polymer hybrid composite (GF-CPW-PP), (2) a polypropylene composite (PP), (3) a carbon prepreg waste reinforced composite (CPW-PP), and (4) a glass fibre reinforced composite (GF-PP) and reported their degradation and residual tension properties after immersion in water. The polymer hybrid composites were fabricated via extrusion technique with minimum reinforce glass-carbon prepreg waste content of 10 wt%. The immersion test was conducted at room temperature using distilled water. Moisture content and diffusion coefficient (DC) were determined based on water adsorption values recorded at 24-h intervals over a one-week period. The results indicated that GF-PP reinforced composites retained the most moisture post-168 h of immersion. However, hardness and tensile strength were found to decrease with increased water adsorption. Tensile strength was found to be compromised since pores produced during hydrolysis reduced interfacial bonding between glass fibre and prepreg carbon reinforcements and the PP matrix.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献