Quasi-static perforation response of inter-ply hybrid polypropylene composites at various temperatures

Author:

Öztoprak Nahit1ORCID,Özdemir Okan1ORCID,Kandaş Halis2

Affiliation:

1. Department of Mechanical Engineering, Dokuz Eylul University, Izmir, Turkey

2. The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir, Turkey

Abstract

This study is motivated by the lack of knowledge in the research of mechanical characterization of thermoplastic composites (TPCs) with additional fiber hybridization. To enhance the mechanical properties of long glass fiber-reinforced polypropylene (PP) composite, hybridization via alkaline-treated aramid and carbon fabrics is performed. High performance fabrics modified with 10 wt.% sodium hydroxide (NaOH) aqueous solution are incorporated into the PP composite as reinforcements. Herewith, four arrangements (hybrid composites) for two different reinforcements and two different stacking configurations and the monolithic composite are separately investigated in terms of quasi-static perforation behavior. Failure mechanisms are also evaluated at macro level by visual observations and micro scales through a scanning electron microscopy (SEM). The experimental results provide a basis for selecting fiber-enabled hybridization and lay-up configuration with improved perforation resistance. Moreover, the influence of test temperature is reported for three different values as 20°C, 60°C, and 100°C. Based upon the results, the maximum penetration force of hybrid configuration with single-layered aramid fabric reinforcements is approximately 15.5% higher than that of single-layered carbon fabric reinforcements at 60°C test temperature. It is further observed that the absorbed energy improves as the number of fabrics is increased in both aramid and carbon reinforcements. The test temperatures significantly affect the failure mechanisms of TPCs. A smaller damaged area at the penetrated faces of the hybrid structures is obtained by comparison with the monolithic TPCs.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3