Dynamic Performance Analysis and Control Parameter Adjustment Algorithm for Flywheel Batteries Considering Vehicle Direct Action

Author:

Zhang Weiyu1,Cui Junjie1

Affiliation:

1. School of Electrical and Information Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China

Abstract

Traditional methods often ignore the direct influences of vehicle vibration on the flywheel battery system, which leads to an inaccurate analysis of the dynamic performance of the flywheel battery system and its control effect. Therefore, to make up for the deficiencies of existing studies, a more accurate dynamic performance analysis method and efficient control parameter adjustment algorithm for flywheel batteries based on automotive direct action are proposed in this study. First, the influence of road conditions and vehicle driving conditions on the stability of a vehicle is analyzed primarily. Then, the vibration signal generated by the vehicle is transmitted to the vehicle’s magnetic flywheel battery system for analysis, and the accuracy of the analysis process is realized. Then, according to the stability analysis results for the direct action of the vehicle and the actual PID controller, the control parameter adjustment algorithm is summarized using the curve-fitting method. Finally, a performance test is carried out on the mobile experimental platform. Good experimental results show that the flywheel can quickly return to its equilibrium position and effectively reduce the influence of interference from road conditions and different working conditions and improve the robustness. Therefore, the correctness of the theoretical analysis and parameter adjustment method proposed in this paper was effectively verified.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3