A Detailed Insight into Acoustic Attenuation in a Static Bed of Hydrophilic Nanosilica

Author:

Ali Syed Sadiq,Arsad AgusORCID,Hossain SK SafdarORCID,Asif MohammadORCID

Abstract

The commercial utilization of bulk nanosilica is widespread in concrete, rubber and plastics, cosmetics and agriculture-related applications, and the market of this product is projected to exceed USD 5 billion by 2025. In this investigation, the local dynamics of a nanosilica bed, excited with sinusoidal acoustic waves of different frequencies, were carefully monitored using sensitive pressure transducers to obtain detailed insights into the effectiveness of sound waves as a means of energy transport inside the bed. The evolution of wave patterns and their frequency and power distributions were examined both in the freeboard and in the static bed. These results were compared with those obtained by using an empty column. The acoustic frequency strongly affected the signal power. The average power of the acoustic signal in the freeboard region was twice higher than that for the empty column, whereas the same (power) ratio decreased to approximately 0.03 inside the bed for 300 Hz. However, at 360 Hz, the power ratio was substantially lower at 0.24 and 0.002 for the freeboard and the granular bed, respectively, thereby indicating tremendous attenuation of acoustic waves in the granular media at all frequencies.

Funder

Deanship of Scientific Research at King Faisal University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3