Predictions on the Phase Constitution of SmCo7−XMx Alloys by Data Mining

Author:

Xu Guojing,Lu Hao,Guo Kai,Tang Fawei,Song Xiaoyan

Abstract

Based on a home-built Sm-Co-based alloys database, this work proposes a support vector machine model to study the concurrent effects of element doping and microstructure scale on the phase constitution of SmCo7-based alloys. The results indicated that the doping element’s melting point and electronegativity difference with Co are the key features that affect the stability of the 1:7 H phase. High-throughput predictions on the phase constitution of SmCo7-based alloys with various characteristics were achieved. It was found that doping elements with electronegativity differences with Co that are smaller than 0.05 can significantly enhance 1:7 H phase stability in a broad range of grain sizes. When the electronegativity difference increases to 0.4, the phase stability becomes more dependent on the melting point of the doping element, the doping concentration, and the mean grain size of the alloy. The present data-driven method and the proposed rule for 1:7 H phase stabilization were confirmed by experiments. This work provides a quantitative strategy for composition design and tailoring grain size to achieve high stability of the 1:7 H phase in Sm-Co-based permanent magnets. The present method is applicable for evaluating the phase stability of a wide range of metastable alloys.

Funder

National Key Program of Research and Development

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3