A Self-Assembly of Single Layer of Co Nanorods to Reveal the Magnetostatic Interaction Mechanism

Author:

Du Hongyu,Zhang Min,Yang Ke,Li Baohe,Ma Zhenhui

Abstract

In this work, we report a self-assembly method to fabricate a single layer of Co nanorods to study their magnetostatic interaction behavior. The Co nanorods with cambered and flat tips were synthesized by using a solvothermal route and an alcohol–thermal method, respectively. Both of them represent hard magnetic features. Co nanorods with cambered tips have an average diameter of 10 nm and length of 100 nm with coercivity of 6.4 kOe, and flat-tip nanorods with a 30 nm diameter and 100 nm length exhibit a coercivity of 4.9 kOe. They are further assembled on the surface of water in assistance of surfactants. The results demonstrate that the assembly type is dependent on the magnetic induction lines direction. For Co nanorods with flat tips, most of magnetic induction lines are parallel to the length direction, leading to an assembly that is tip to tip. For Co nanorods with cambered tips, they are prone to holding together side by side for their random magnetic induction lines. Under an applied field, the Co nanorods with flat tips can be further aligned into a single layer of Co nanorods. Our work gives a possible mechanism for the magnetic interaction of Co nanorods and provides a method to study their magnetic behavior.

Funder

Beijing Technology and Business University Research Team Construction Project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3