Label-Free Detection of Saxitoxin with Field-Effect Device-Based Biosensor

Author:

Ullah NajeebORCID,Noureen Beenish,Tian Yulan,Du Liping,Chen Wei,Wu ChunshengORCID

Abstract

Saxitoxin (STX) is a highly toxic and widely distributed paralytic shellfish toxin (PSP), posing a serious hazard to the environment and human health. Thus, it is highly required to develop new STX detection approaches that are convenient, desirable, and affordable. This study presented a label-free electrolyte-insulator-semiconductor (EIS) sensor covered with a layer-by-layer developed positively charged Poly (amidoamine) (PAMAM) dendrimer. An aptamer (Apt), which is sensitive to STX was electrostatically immobilized onto the PAMAM dendrimer layer. This results in an Apt that is preferably flat inside a Debye length, resulting in less charge-screening effect and a higher sensor signal. Capacitance-voltage and constant-capacitance measurements were utilized to monitor each step of a sensor surface variation, namely, the immobilization of PAMAM dendrimers, Apt, and STX. Additionally, the surface morphology of PAMAM dendrimer layers was studied by using atomic force microscopy and scanning electron microscopy. Fluorescence microscopy was utilized to confirm that Apt was successfully immobilized on a PAMAM dendrimer-modified EIS sensor. The results presented an aptasensor with a detection range of 0.5–100 nM for STX detection and a limit of detection was 0.09 nM. Additionally, the aptasensor demonstrated high selectivity and 9-day stability. The extraction of mussel tissue indicated that an aptasensor may be applied to the detection of STX in real samples. An aptasensor enables marine toxin detection in a rapid and label-free manner.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3