Fatigue Behavior of Sandstone Exposed to Cyclic Point-Loading: Implications for Improving Mechanized Rock Breakage Efficiency

Author:

Cai Xin12ORCID,Yuan Jifeng1,Zhou Zilong12,Wu Zhibo3,Liu Jianmin4,Ullah Barkat1ORCID,Wang Shaofeng12

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410010, China

2. Hunan Provincial Key Laboratory of Resources Exploitation and Hazard Control for Deep Metal Mines, Central South University, Changsha 410010, China

3. Norinmining Co., Ltd., Beijing 100055, China

4. CCFED Civil Engineering Co., Ltd., Changsha 410010, China

Abstract

During the process of mechanized excavation, rock is essentially subjected to cyclic point loading (CPL). To understand the CPL fatigue behavior of rock materials, a series of CPL tests are conducted on sandstone samples by using a self-developed vibration point-load apparatus. The effects of loading frequency and waveform on rock fatigue properties under CPL conditions are specifically investigated. The load and indentation depth histories of sandstone samples during testing are monitored and logged. The variation trends of fatigue life (failure time) under different loading conditions are obtained. Test results indicate that the fatigue life of the sandstone sample exposed to CPL is dependent on both loading frequency and waveform. As the loading frequency rises, the fatigue life of the sandstone first declines and then increases, and it becomes the lowest at 0.5 Hz. In terms of waveform, the fatigue life of the sandstone is largest under the trigonal wave and is least under the rectangular wave. These findings can provide valuable theoretical support for optimizing the rock cutting parameters to enhance the efficiency of mechanized excavation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3