Al2O3-Cu Substrate with Co-Continuous Phases Made by Powder Sintering Process

Author:

Wang Shuangxi,Lan Haifeng,Wang Wenjun,Liu Gaoshan,Zhang Dan

Abstract

Ceramic-Al substrates with co-continuous ceramic and metal phases, which exhibit high thermal conductivity and compatible coefficient of thermal expansion (CTE), have been widely investigated through the process of die-casting. In this research, a kind of powder sintering process was proposed for fabricating ceramic-Cu composite substrates with co-continuous phases. Copper fiber (Cuf) has excellent thermal conductivity and large aspect ratio, making it an ideal material to form bridging network structures in the ceramic-Cu composite. To maintain the large aspect ratio of Cuf, and densify the composite substrate, ZnO-SiO2-CaO glass was introduced as a sintering additive. Both Al2O3/glass/Cuf and Al2O3/30glass/Cup composite substrates were hot-pressed at 850 °C under 25 MPa. Experimental results showed that the thermal conductivity of Al2O3/30glass/30Cuf composite substrate was as high as 38.9 W/mK, which was about 6 times that of Al2O3/30glass; in contrast, the thermal conductivity of Al2O3/30glass/30Cup composite substrate was only 25.9 W/mK. Microstructure observation showed that, influenced by hot press and corrosion of molten ZnO-SiO2-CaO glass, the copper fibers were deformed under hot-pressing, and some local melting-like phenomena occurred on the surface of copper fiber at 850 °C under 25 MPa. The molten phase originating from surface of Cuf welded the overlapping node of copper fibers during cooling process. Finally, the interconnecting metal bridging in ceramic matrix was formed and behaved as a rapid heat-dissipating channel, which is similar to substrates prepared through die-casting process by porous ceramic and melted Al.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3