Effects of Cr and Zr Addition on Microstructures, Compressive Properties, and Abrasive Wear Behaviors of In Situ TiB2/Cu Cermets

Author:

Qiu Feng,Duan Xiangzheng,Dong Baixin,Yang Hongyu,Lu Jianbang,Li XiujuanORCID

Abstract

: In situ micro-TiB2/Cu cermets with a different TiB2 content (40, 50, and 60 vol %) were successfully fabricated by combustion synthesis (CS) and hot press consolidation in Cu-Ti-B systems. In addition, different contents of Cr and Zr were added to the Cu-Ti-B systems. The microstructure, mechanical properties, and abrasive wear properties of the TiB2/Cu cermets were investigated. As the ceramic content increased, the yield strength and compressive strength of the cermets were found to increase, while the strain decreased. An increase in load and abrasive particle size caused the wear volume loss of the TiB2/Cu cermets to increase. When the ceramic content was 60 vol %, the wear resistance of the TiB2/Cu cermets was 3.3 times higher than that of pure copper. The addition of the alloying elements Zr and Cr had a significant effect on the mechanical properties of the cermets. When the Cr content was 5 wt %, the yield strength, ultimate compressive strength, and microhardness of the cermets reached a maximum of 997 MPa, 1183 MPa, and 491 Hv, respectively. Correspondingly, when the Zr content was 5 wt %, those three values reached 1764 MPa, 1967 MPa, and 655 Hv, respectively, which are 871 MPa, 919 MPa, and 223 Hv higher than those of the unalloyed cermets. The wear mechanism of the in-situ TiB2/Cu cermets, and the mechanisms by which the strength and wear resistance were enhanced by the addition of Zr, were preliminarily revealed.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3