In Situ Fabrication and Static Contact Resistance of CdMoO4 Reinforced Cu Matrix Composites

Author:

Li Wei-Jian,Zhang Lu,Chen Zi-Yao,Shao Wen-Zhu,Zhen Liang

Abstract

Particle-reinforced Cu-based electrical contact materials prepared by traditional powder metallurgical methods suffer the same critical problem, where the agglomeration of the addition phases in the Cu matrix significantly deteriorates the performance of the composites and restricts their application. In this work, CdMoO4/Cu matrix composites were fabricated by an in situ method and followed by a powder metallurgical process. Firstly, CdMoO4/particles formed a nucleus and grew up based on the surfaces of Cu particles, realizing the controllable in situ synthesis of mixed powders with homogeneously dispersed CdMoO4 nanoparticles via a one-step reaction. Secondly, the bulk CdMoO4/Cu composites were fabricated by pressing and sintering and then densified by hot-extrusion and cold rolling processes. The microstructures and properties of the extruded and rolled specimens were characterized, respectively. The results indicated that the rolled CdMoO4/Cu composite exhibited excellent comprehensive properties of electrical conductivity and mechanical properties for electrical contact materials. Moreover, the effects of the contact force on the static contact resistance of the extruded and rolled composites were evaluated in the closed state of the contact materials. It was found that the rolled CdMoO4/Cu contact materials possessed a stable electrical contact characteristic with low and steady contact resistance. This work designed ternary CdMoO4 particles to reinforce Cu-based composites with well-balanced performances by an in situ synthesis method and this strategy can be extended to the design of ternary oxide/metal composites utilized as electrical contact materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3