Open Collaborative Platform for Multi-Drones to Support Search and Rescue Operations

Author:

Ho Yao-HuaORCID,Tsai Yu-Jung

Abstract

Climate-related natural disasters have affected the lives of thousands of people. Global warming creates warmer and drier conditions which increase the risk of wildfires. In large-scale disasters such as wildfires, search and rescue (SAR) operations become extremely challenging due to low visibility, difficulty to breath, and high temperature from fire and smoke. Unmanned aerial vehicles (UAVs), such as drones, have been used to support such operations. In our previous work, a Krypto module is proposed to “sniff” out wireless signals from mobile phones to locate any possible survivors. With the increased popularity of drones, it is possible to allow people to volunteer in SAR operations with their drones. In this paper, we propose an Open Collaborative Platform for multiple drones to assist SAR operations. The open platform manages different searching drones that carry the Krypto module to collaborate by sharing information and planning search paths/areas. With our Open Collaborative Platform, anyone can participate in SAR operations and contribute to finding possible survivors. The novelty of this work is the openness and collaboration of the platform that “crowdsourcing” the searching operation to a large group of people who share information and contribute to finding possible survivors in a large disaster such as wildfires. Our experimental study shows that the Open Collaborative Platform is effective in reducing both the number of drones required and the search time for finding survivors.

Funder

Taiwan Ministry of Science and Technology

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference45 articles.

1. Centre for Research on the Epidemiology of Disasters, “Disaster Year in Review 2020” https://cred.be/sites/default/files/CredCrunch65.pdf

2. Wildfires https://www.who.int/health-topics/wildfires#tab=tab_1

3. Krypto: Assisting Search and Rescue Operations using Wi-Fi Signal with UAV;Ho,2015

4. Krypto Source Code https://github.com/NTNUNSL/WIFILocatedDrone

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3