Assessment of Android Network Positioning as an Alternative Source of Navigation for Drone Operations

Author:

Lee Dong-KyeongORCID,Nedelkov Filip,Akos Dennis M.

Abstract

Applications of drones have increased significantly in the past decade for both indoor and outdoor operations. In order to assist autonomous drone navigation, there are numerous sensors installed onboard the vehicles. These include Global Navigation Satellite Systems (GNSS) chipsets, inertial sensors, barometer, lidar, radar and vision sensors. The two sensors used most often by drone autopilot controllers for absolute positioning are the GNSS chipsets and barometer. Although, for most outdoor operations, these sensors provide accurate and reliable position information, their accuracy, availability, and integrity deteriorate for indoor applications and in the presence of radio frequency interference (RFI), such as GNSS spoofing and jamming. Therefore, it is possible to derive network-based locations from Wi-Fi and cellular transmission. Although there have been many theoretical studies on network positioning, limited resources are available for the expected quantitative performance of these positioning methodologies. In this paper, the authors investigate both the horizontal and vertical accuracy of the Android network location engines under rural, suburban, and urban environments. The paper determines the horizontal location accuracy to be approximately 1637 m, 38 m, and 32 m in terms of 68% circular error probable (CEP) for rural, suburban, and urban environments, respectively, and the vertical accuracy to be 1.2 m and 4.6 m in terms of 68% CEP for suburban and urban environments, respectively. In addition, the availability and latency of the location engines are explored. Furthermore, the paper assesses the accuracy of the Android network location accuracy indicator for various drone operation environments. The assessed accuracies of the network locations provide a deeper insight into their potential for drone navigation.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference36 articles.

1. FAA Approves Flytrex Drone Delivery Service Expansion, AVwebhttps://www.avweb.com/recent-updates/unmanned-vehicles/faa-approves-flytrex-drone-delivery-service-expansion/

2. Pixhawk 4 Datasheet, Px4https://docs.px4.io/master/en/flight_controller/pixhawk4.html

3. ICM-20689 Datasheet, InvenSensehttps://invensense.tdk.com/download-pdf/icm-20689-datasheet/

4. Tightly-Coupled Joint User Self-Calibration of Accelerometers, Gyroscopes, and Magnetometers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3