Tightly-Coupled Joint User Self-Calibration of Accelerometers, Gyroscopes, and Magnetometers

Author:

Chow JackyORCID,Hol Jeroen,Luinge Henk

Abstract

Inertial measurement units (IMUs) are fundamental for attitude control of drones. With the advancements in micro-electro-mechanical systems (MEMS) fabrication processes, size, power consumption, and price of these sensors have reduced significantly and attracted many new applications. However, this came at the expense of sensors requiring frequent recalibration, as they are highly contaminated with systematic errors. This paper presents a novel method to jointly calibrate the accelerometer, gyroscope, and magnetometer triad in a MEMS IMU without additional equipment. Opportunistic zero change in velocity and position updates, and inclination updates were used in conjunction with relative orientation updates from magnetometers in a robust batch least-squares adjustment. Solutions from the proposed self-calibration were compared to existing calibration methods. Empirical results suggest that the new method is robust against magnetic distortions and can achieve performance similar to a specialized calibration that uses a more accurate (and expensive) IMU as reference. The jointly estimated accelerometer and gyroscope calibration parameters can deliver a more accurate dead-reckoning solution than the popular multi-position calibration method (i.e., 54% improvement in orientation accuracy) by recovering the gyroscope scale error and other systematic errors. In addition, it can improve parameter observability as well as reduce calibration time by incorporating dynamic data with static orientations. The proposed calibration was also applied on-site pre-mission by simply waving the sensor by hand and was able to improve the orientation tracking accuracy by 73%.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference43 articles.

1. The static accuracy and calibration of inertial measurement units for 3D orientation

2. Fundamentals of High Accuracy Inertial Navigation;Chatfield,1997

3. Automated Calibration of an Accelerometers, Magnetometers and Gyroscopes—A Feasibility Study;Madgwick,2010

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3