The Development of a Visual Tracking System for a Drone to Follow an Omnidirectional Mobile Robot

Author:

Zou Jie-Tong,Dai Xiang-Yin

Abstract

This research aims to develop a visual tracking system for a UAV which guides a drone to track a mobile robot and accurately land on it when it stops moving. Two LEDs with different colors were installed on the bottom of the drone. The visual tracking system on the mobile robot can detect the heading angle and the distance between the drone and mobile robot. The heading angle and flight velocity in the pitch and roll direction of the drone were modified by PID control, so that the flying speed and angle are more accurate, and the drone can land quickly. The PID tuning parameters were also adjusted according to the height of the drone. The embedded system on the mobile robot, which is equipped with Linux Ubuntu and processes images with OpenCV, can send the control command (SDK 2.0) to the Tello EDU drone through WIFI with UDP Protocol. The drone can auto-track the mobile robot. After the mobile robot stops, the drone can land on the top of the mobile robot. From the experimental results, the drone can take off from the top of the mobile robot, visually track the mobile robot, and finally land on the top of the mobile robot accurately.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference15 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3