Mathematical Modeling and Stability Analysis of Tiltrotor Aircraft

Author:

Sheng HanlinORCID,Zhang Chen,Xiang Yulong

Abstract

The key problem in the development process of a tiltrotor is its mathematical modeling. Regarding that, this paper proposes a dividing modeling method which divides a tiltrotor into five parts (rotor, wing, fuselage, horizontal tail, and vertical fin) and to develop aerodynamic models for each of them. In that way, force and moment generated by each part are obtained. Then by blade element theory, we develop the rotor’s dynamic model and rotor flapping angle expression; by mature lifting line theory, the build dynamic models of the wings, fuselage, horizontal tail and vertical fin and the rotors’ dynamic interference on wings, as well as nacelle tilt’s variation against center of gravity and moment of inertia, are taken into account. In MATLAB/Simulink simulation environment, a non-linear tiltrotor simulation model is built, Trim command is applied to trim the tiltrotor, and the XV-15 tiltrotor is taken as an example to validate rationality of the model developed. In the end, the non-linear simulation model is linearized to obtain a state-space matrix, and thus the stability analysis of the tiltrotor is performed.

Funder

National Natural Science Foundation of China

Funding of National Key Laboratory of Rotorcraft Aeromechanics

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3