Abstract
The key problem in the development process of a tiltrotor is its mathematical modeling. Regarding that, this paper proposes a dividing modeling method which divides a tiltrotor into five parts (rotor, wing, fuselage, horizontal tail, and vertical fin) and to develop aerodynamic models for each of them. In that way, force and moment generated by each part are obtained. Then by blade element theory, we develop the rotor’s dynamic model and rotor flapping angle expression; by mature lifting line theory, the build dynamic models of the wings, fuselage, horizontal tail and vertical fin and the rotors’ dynamic interference on wings, as well as nacelle tilt’s variation against center of gravity and moment of inertia, are taken into account. In MATLAB/Simulink simulation environment, a non-linear tiltrotor simulation model is built, Trim command is applied to trim the tiltrotor, and the XV-15 tiltrotor is taken as an example to validate rationality of the model developed. In the end, the non-linear simulation model is linearized to obtain a state-space matrix, and thus the stability analysis of the tiltrotor is performed.
Funder
National Natural Science Foundation of China
Funding of National Key Laboratory of Rotorcraft Aeromechanics
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献