A Novel Aerodynamic Modeling Method Based on Data for Tiltrotor evtol

Author:

Wang Haiyang1ORCID,Li Peng1ORCID,Wu Dongsu2

Affiliation:

1. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China

2. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

A data-driven aerodynamic modeling method is proposed to address the problem that traditional modeling methods based on physical mechanisms cannot fully represent the special aerodynamic characteristics of tiltrotor evtol aircraft. By analyzing the uniquely complex aerodynamic characteristics of electric vertical take-off and landing (evtol) aircraft, an MLP neural network model has been constructed that reflects the coupling characteristics between influencing factors. Using the XV15 wind tunnel test data, a dataset was constructed, and the neural network model was trained and validated. Simulation results show that the selected data-driven method can accurately predict the aerodynamic characteristics of the longitudinal transition phase of the tiltrotor evtol.

Funder

China Scholarship Council

Publisher

MDPI AG

Reference24 articles.

1. Factors affecting the adoption and use of urban air mobility;Chaniotakis;Transp. Res. Part A Policy Pract.,2020

2. Doo, J.T., Pavel, M.D., Didey, A., Hange, C., Diller, N.P., Tsairides, M.A., Smith, M., Bennet, E., Bromfield, M., and Mooberry, J. (2024, March 25). NASA Electric Vertical Takeoff and Landing (evtol) Aircraft Technology for Public Services—A White Paper, Available online: https://ntrs.nasa.gov/citations/20205000636.

3. Tilt-wing evtol takeoff trajectory optimization;Chauhan;J. Aircr.,2020

4. System Identification Approach for evtol Aircraft Demonstrated Using Simulated Flight Data;Simmons;J. Aircr.,2023

5. Modeling and analysis of tilt-rotor aeromechanical phenomena;Barkai;Math. Comput. Model.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3