A Cascaded and Adaptive Visual Predictive Control Approach for Real-Time Dynamic Visual Servoing

Author:

Sajjadi SinaORCID,Mehrandezh MehranORCID,Janabi-Sharifi FarrokhORCID

Abstract

In the past two decades, Unmanned Aerial Vehicles (UAVs) have gained attention in applications such as industrial inspection, search and rescue, mapping, and environment monitoring. However, the autonomous navigation capability of UAVs is aggravated in GPS-deprived areas such as indoors. As a result, vision-based control and guidance methods are sought. In this paper, a vision-based target-tracking problem is formulated in the form of a cascaded adaptive nonlinear Model Predictive Control (MPC) strategy. The proposed algorithm takes the kinematics/dynamics of the system, as well as physical and image constraints into consideration. An Extended Kalman Filter (EKF) is designed to estimate uncertain and/or time-varying parameters of the model. The control space is first divided into low and high levels, and then, they are parameterised via orthonormal basis network functions, which makes the optimisation- based control scheme computationally less expensive, therefore suitable for real-time implementation. A 2-DoF model helicopter, with a coupled nonlinear pitch/yaw dynamics, equipped with a front-looking monocular camera, was utilised for hypothesis testing and evaluation via experiments. Simulated and experimental results show that the proposed method allows the model helicopter to servo toward the target efficiently in real-time while taking kinematic and dynamic constraints into account. The simulation and experimental results are in good agreement and promising.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

Reference37 articles.

1. Visual servo control. II. Advanced approaches [Tutorial]

2. Conjugated Visual Predictive Control for Constrained Visual Servoing;Fallah;J. Intell. Robot. Syst.,2021

3. A tutorial on visual servo control

4. Predictive Control for Constrained Image-Based Visual Servoing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3