Preliminary Clinical Validation of a Drone-Based Delivery System in Urban Scenarios Using a Smart Capsule for Blood

Author:

Niglio Fabrizio,Comite Paola,Cannas Andrea,Pirri Angela,Tortora GiuseppeORCID

Abstract

In this paper, we report on the validation of an autonomous drone-based delivery system equipped with a smart capsule for the transportation of blood products in urban areas. The influence of some thermo-mechanical parameters, such as altitude, acceleration/deceleration, external temperature and humidity, on the specimens’ integrity were analyzed. The comparison of the results carried out by hemolytic tests, performed systematically on samples before and after each drone flight, clearly demonstrated that the integrity of blood is preserved and no adverse effects took place during the transport; these results can be addressed to the smart-capsule properties, which allows integrating real-time quality monitoring and control of the temperature experienced by blood products and mechanical vibrations. In addition, we demonstrated this transport system reduces the delivery time considerably. A risk analysis (i.e., HFMEA) was applied to all delivery processes to assess possible criticalities. To the best of our knowledge, this is the first time a drone-based delivery system of blood products in an urban area has been validated to be employed in a future clinical scenario.

Publisher

MDPI AG

Subject

Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3