Comparative Study of SnO2 and ZnO Semiconductor Nanoparticles (Synthesized Using Randia echinocarpa) in the Photocatalytic Degradation of Organic Dyes

Author:

Chinchillas-Chinchillas Manuel J.ORCID,Garrafa-Gálvez Horacio E.ORCID,Orozco-Carmona Victor M.,Luque-Morales Priscy A.

Abstract

Symmetry in nanomaterials is essential to know the behavior of their properties. In the present research, the photocatalytic properties of SnO2 and ZnO nanoparticles were compared for the degradation of the cationic dyes Methylene Blue (MB) and Rhodamine B (RB). The nanoparticles were obtained through a green synthesis process assisted by Randia echinocarpa extracts; they were then analyzed through Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) to characterize their structure. Transmission electron microscopy (TEM) was used to identify the morphology and disclose nanoparticle size, and the optical properties were studied through Ultraviolet–visible spectroscopy (UV–Vis). The results show that the synthesized SnO2 and ZnO nanomaterials have quasispherical morphologies with average sizes of 8–12 and 4–6 nm, cassiterite and wurtzite crystal phases, and band gap values of 3.5 and 3.8 eV, respectively. The photocatalytic activity yielded 100% degradation of the MB and RB dyes in 210 and 150 min, respectively. ZnO performed higher photocatalytic degradation of the cationic dyes than SnO2 due to a higher content of Randia echinocarpa extracts remaining after the green synthesis process.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3