The Observational Shadow Features of a Renormalization Group Improved Black Hole Considering Spherical Accretions

Author:

Chen Yun-Xian,Mou Ping-Hui,Li Guo-Ping

Abstract

The study of black hole shadows by considering the surrounding kinds of matter has attracted interest in recent years. In this paper, we use the ray-tracing method to study shadows and photon spheres of renormalization group improved (RGI) black holes, taking into account the different thin spherical accretion models. We find that an increase in the parameters Ω and γ, which are excited by renormalization group theory, can decrease the event horizon and the radius of the photon sphere while increasing the effective potential. For static and infalling accretions, these results indicate that black hole shadows are related to the geometry of spacetime, and are nearly unaffected by spherical accretions. However, due to the Doppler effect, the shadow in the infalling case is darker than the static one, and the intensities of the photon sphere decay more slowly from the photon sphere to infinity. In addition, the peak intensities out of the shadow increase with the parameters Ω and γ. Finally, it can be seen that the effect of Ω on the shadow is more distinct by comparing it with that of γ at the same parameter level.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3