Charged spinning and magnetized test particles orbiting quantum improved charged black holes

Author:

Ladino Jose Miguel,Benavides-Gallego Carlos A.,Larrañaga Eduard,Rayimbaev JavlonORCID,Abdulxamidov Farrux

Abstract

AbstractIn the present work, we aimed to investigate the dynamics of spinning charged and magnetized test particles around both electrically and magnetically charged quantum-improved black holes. We derive the equations of motion for charged spinning test particles using the Mathisson-Papapetrou-Dixon ***equations with the Lorentz coupling term. The radius of innermost stable circular orbits (ISCOs), specific angular momentum, and energy for charged spinless, uncharged spinning, and charged spinning test particles around the charged and non-charged quantum-improved black holes are analyzed separately. We found that the quantum parameter increases the maximum spin value, $$s_\textrm{max}$$ s max , which leads to the nonphysical motion (superluminal motion) of the charged spinning test particle. In contrast, the black hole charge decreases its value. We also found that, in contrast to the Reissner Nordström black hole, spinning charged test particles in the quantum-improved charged black hole have higher $$s_\textrm{max}$$ s max ; moreover, positively charged spinning particles can have higher values of $$s_\textrm{max}$$ s max near the extreme black hole cases when compared with uncharged spinning particles. Finally, we investigate the magnetized test particle’s dynamics in the spacetime of a quantum-improved magnetically charged black hole in Quantum Einstein Gravity using the Hamilton–Jacobi equation. We show that the presence of $$\omega $$ ω increases the maximum value of the effective potential and decreases the minimum energy and angular momentum of magnetized particles at their circular orbits. We found an upper constraint in the black hole charge at the ISCO.

Publisher

Springer Science and Business Media LLC

Subject

Physics and Astronomy (miscellaneous),Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3