Open-Pit Pushback Optimization by a Parallel Genetic Algorithm

Author:

Navarro Felipe1ORCID,Morales Nelson2ORCID,Contreras-Bolton Carlos3ORCID,Rey Carlos45,Parada Victor67ORCID

Affiliation:

1. Advanced Laboratory for Geostatistical Supercomputing (ALGES), Advanced Mining Technology Center (AMTC), Department of Mining Engineering, University of Chile, Santiago 8370451, Chile

2. Département des Génies Géologique, Civil et des Mines, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada

3. Departamento de Ingeniería Industrial, Universidad de Concepción, Edmundo Larenas 219, Concepción 4070409, Chile

4. DEI “Guglielmo Marconi”, Università di Bologna, 40126 Bologna, Italy

5. Departamento de Ingeniería Industrial, Universidad del Bio-Bio, Concepción 3780000, Chile

6. Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago 9170022, Chile

7. Instituto Sistemas Complejos de Ingeniería (ISCI), Santiago 8320000, Chile

Abstract

Determining the design of pushbacks in an open-pit mine is a key part of optimizing the economic value of the mining project and the operational feasibility of the mine. This problem requires balancing pushbacks that have good geometric properties to ensure the smooth operation of the mining equipment and so that the scheduling of extraction maximizes the economic value by providing early access to the rich parts of the deposit. However, because of the challenging nature of the problem, practical approaches for finding the best pushbacks strongly depend on the expert criteria to ensure good operational properties. This paper introduces the Advanced Geometrically Constrained Production Scheduling Problem to account for operational space constraints, modeled as truncated cones of extraction. To find the best solution for this problem, we present a parallel genetic algorithm based on a genotype–phenotype model such that the genotype symbolizes the base block of a truncated cone, and the phenotype represents the cone itself. A central computer node evaluates these solutions, collaborating with various secondary nodes that evolve a population of feasible solutions. The PGA’s efficacy was validated using comprehensive test instances from established research. The PGA solution exhibited a consistent average copper grade across periods, with its incremental phases reflecting real-world mine geometry. Moreover, the benefits of the MeanShift clustering technique were evident, suggesting effective phase-based scheduling. The PGA’s approach ensures optimal resource utilization and offers insights into potential avenues for further model enhancements and fine-tuning.

Funder

ANID PIA

USACH Sabbatical Project

Universidad de Santiago de Chile

DICYT-USACH

National Agency for Research and Development (ANID)/Scholarship Program/Doctorado Becas Chile/2018

Subvención a la Instalación en la Academia

Vicerrectoriade Investigación y Postgrado (VRIP) through the “Proyecto de Investigación Interno 2023”

Publisher

MDPI AG

Reference33 articles.

1. Hustrulid, W., and Kuchta, M. (1995). Open Pit Mine Planning and Design. Volume 1—Fundamentals, U.S. Department of Energy Office of Scientific and Technical Information.

2. Tailored Lagrangian Relaxation for the Open Pit Block Sequencing Problem;Lambert;Ann. Oper Res.,2014

3. Lerchs, H., and Grossman, F. (1965). Optimum Design of Open-Pit Mines. Transaction. CIM, 47–54.

4. A New—Old Algorithm for Minimum-Cut and Maximum-Flow in Closure Graphs;Hochbaum;Networks,2001

5. A New Algorithm for the Open-Pit Mine Production Scheduling Problem;Chicoisne;Oper. Res.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning for open-pit mining: a systematic review;International Journal of Mining, Reclamation and Environment;2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3