Upscaled Production of Satellite-Free Droplets: Step Emulsification with Deterministic Lateral Displacement

Author:

Ji Guangchong1,Masui Shuzo2ORCID,Kanno Yusuke2ORCID,Nisisako Takasi2ORCID

Affiliation:

1. Department of Mechanical Engineering, School of Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan

2. Institute of Innovative Research, Tokyo Institute of Technology, R2-9, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan

Abstract

Step emulsification is a key technique for achieving scalable production of monodisperse emulsion droplets owing to its resilience to flow fluctuations. However, the persistent issue of satellite droplets, an inherent byproduct of main droplets, poses challenges for achieving truly uniform product sizes. In a previous study, we introduced a module with step-emulsifier nozzles upstream and deterministic lateral displacement (DLD) micropillar arrays downstream to generate satellite-free droplets at a low throughput. In this study, we demonstrate an upscaled parallelized setup with ten modules that were designed to produce satellite-free droplets. Each module integrated 100 step-emulsification nozzles in the upstream region with DLD micropillar arrays downstream. We conducted 3D flow simulations to ensure homogeneous distribution of the input fluids. Uniformly supplying an aqueous polyvinyl alcohol solution and an acrylate monomer as continuous and dispersed phases into the ten modules, the nozzles in each module exhibited a production rate of 539.5 ± 28.6 drop/s (n = 10). We successfully isolated the main droplets with a mean diameter of 66 μm and a coefficient of variation of 3.1% from satellite droplets with a mean diameter of 3 μm. The total throughput was 3.0 mL/h. The high yield and contamination-free features of our approach are promising for diverse industrial applications.

Funder

JST SPRING

JSPS KAKENHI

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3