Skin Lesion Detection Algorithms in Whole Body Images

Author:

Strzelecki Michał H.ORCID,Strąkowska Maria,Kozłowski MichałORCID,Urbańczyk TomaszORCID,Wielowieyska-Szybińska Dorota,Kociołek MarcinORCID

Abstract

Melanoma is one of the most lethal and rapidly growing cancers, causing many deaths each year. This cancer can be treated effectively if it is detected quickly. For this reason, many algorithms and systems have been developed to support automatic or semiautomatic detection of neoplastic skin lesions based on the analysis of optical images of individual moles. Recently, full-body systems have gained attention because they enable the analysis of the patient’s entire body based on a set of photos. This paper presents a prototype of such a system, focusing mainly on assessing the effectiveness of algorithms developed for the detection and segmentation of lesions. Three detection algorithms (and their fusion) were analyzed, one implementing deep learning methods and two classic approaches, using local brightness distribution and a correlation method. For fusion of algorithms, detection sensitivity = 0.95 and precision = 0.94 were obtained. Moreover, the values of the selected geometric parameters of segmented lesions were calculated and compared for all algorithms. The obtained results showed a high accuracy of the evaluated parameters (error of area estimation <10%), especially for lesions with dimensions greater than 3 mm, which are the most suspected of being neoplastic lesions.

Funder

National Centre for Research and Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. Development of Smartphone Apps for Skin Cancer Risk Assessment: Progress and Promise

2. SkinVision|Skin Cancer Melanoma Detection Apphttps://www.skinvision.com/

3. SpotMole-Apps on Google Playhttps://play.google.com/store/apps/details?id=com.spotmole&gl=PL

4. Efficacy of smartphone applications in high-risk pigmented lesions

5. Comparative effectiveness study of face-to-face and teledermatology workflows for diagnosing skin cancer

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3