Abstract
Melanoma is one of the most lethal and rapidly growing cancers, causing many deaths each year. This cancer can be treated effectively if it is detected quickly. For this reason, many algorithms and systems have been developed to support automatic or semiautomatic detection of neoplastic skin lesions based on the analysis of optical images of individual moles. Recently, full-body systems have gained attention because they enable the analysis of the patient’s entire body based on a set of photos. This paper presents a prototype of such a system, focusing mainly on assessing the effectiveness of algorithms developed for the detection and segmentation of lesions. Three detection algorithms (and their fusion) were analyzed, one implementing deep learning methods and two classic approaches, using local brightness distribution and a correlation method. For fusion of algorithms, detection sensitivity = 0.95 and precision = 0.94 were obtained. Moreover, the values of the selected geometric parameters of segmented lesions were calculated and compared for all algorithms. The obtained results showed a high accuracy of the evaluated parameters (error of area estimation <10%), especially for lesions with dimensions greater than 3 mm, which are the most suspected of being neoplastic lesions.
Funder
National Centre for Research and Development
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献