High-Precision Skin Disease Diagnosis through Deep Learning on Dermoscopic Images

Author:

Malik Sadia Ghani1ORCID,Jamil Syed Shahryar2,Aziz Abdul1,Ullah Sana3ORCID,Ullah Inam4,Abohashrh Mohammed5

Affiliation:

1. School of Computing, National University of Computer & Emerging Sciences, Karachi 75030, Pakistan

2. College of Computing and Information Sciences, PAF Karachi Institute of Economics and Technology (PAFKIET), Karachi 74600, Pakistan

3. Department of Software Engineering, University of Malakand, Malakand 18800, Pakistan

4. Department of Computer Engineering, Gachon University, Seongnam 13120, Republic of Korea

5. Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia

Abstract

Dermatological conditions are primarily prevalent in humans and are primarily caused by environmental and climatic fluctuations, as well as various other reasons. Timely identification is the most effective remedy to avert minor ailments from escalating into severe conditions. Diagnosing skin illnesses is consistently challenging for health practitioners. Presently, they rely on conventional methods, such as examining the condition of the skin. State-of-the-art technologies can enhance the accuracy of skin disease diagnosis by utilizing data-driven approaches. This paper presents a Computer Assisted Diagnosis (CAD) framework that has been developed to detect skin illnesses at an early stage. We suggest a computationally efficient and lightweight deep learning model that utilizes a CNN architecture. We then do thorough experiments to compare the performance of shallow and deep learning models. The CNN model under consideration consists of seven convolutional layers and has obtained an accuracy of 87.64% when applied to three distinct disease categories. The studies were conducted using the International Skin Imaging Collaboration (ISIC) dataset, which exclusively consists of dermoscopic images. This study enhances the field of skin disease diagnostics by utilizing state-of-the-art technology, attaining exceptional levels of accuracy, and striving for efficiency improvements. The unique features and future considerations of this technology create opportunities for additional advancements in the automated diagnosis of skin diseases and tailored treatment.

Funder

Deanship of Research and Graduate Studies at King Khalid University

Publisher

MDPI AG

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3