Advanced Patch-Based Affine Motion Estimation for Dynamic Point Cloud Geometry Compression

Author:

Shao Yiting12ORCID,Gao Wei1ORCID,Liu Shan3,Li Ge1

Affiliation:

1. School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China

2. Peng Cheng Laboratory, Shenzhen 518066, China

3. Media Lab, Tencent, Palo Alto, CA 94306-2028, USA

Abstract

The substantial data volume within dynamic point clouds representing three-dimensional moving entities necessitates advancements in compression techniques. Motion estimation (ME) is crucial for reducing point cloud temporal redundancy. Standard block-based ME schemes, which typically utilize the previously decoded point clouds as inter-reference frames, often yield inaccurate and translation-only estimates for dynamic point clouds. To overcome this limitation, we propose an advanced patch-based affine ME scheme for dynamic point cloud geometry compression. Our approach employs a forward-backward jointing ME strategy, generating affine motion-compensated frames for improved inter-geometry references. Before the forward ME process, point cloud motion analysis is conducted on previous frames to perceive motion characteristics. Then, a point cloud is segmented into deformable patches based on geometry correlation and motion coherence. During the forward ME process, affine motion models are introduced to depict the deformable patch motions from the reference to the current frame. Later, affine motion-compensated frames are exploited in the backward ME process to obtain refined motions for better coding performance. Experimental results demonstrate the superiority of our proposed scheme, achieving an average 6.28% geometry bitrate gain over the inter codec anchor. Additional results also validate the effectiveness of key modules within the proposed ME scheme.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3