Lightweight and Energy-Efficient Deep Learning Accelerator for Real-Time Object Detection on Edge Devices

Author:

Kim Kyungho,Jang Sung-JoonORCID,Park Jonghee,Lee EunchongORCID,Lee Sang-Seol

Abstract

Tiny machine learning (TinyML) has become an emerging field according to the rapid growth in the area of the internet of things (IoT). However, most deep learning algorithms are too complex, require a lot of memory to store data, and consume an enormous amount of energy for calculation/data movement; therefore, the algorithms are not suitable for IoT devices such as various sensors and imaging systems. Furthermore, typical hardware accelerators cannot be embedded in these resource-constrained edge devices, and they are difficult to drive real-time inference processing as well. To perform the real-time processing on these battery-operated devices, deep learning models should be compact and hardware-optimized, and hardware accelerator designs also have to be lightweight and consume extremely low energy. Therefore, we present an optimized network model through model simplification and compression for the hardware to be implemented, and propose a hardware architecture for a lightweight and energy-efficient deep learning accelerator. The experimental results demonstrate that our optimized model successfully performs object detection, and the proposed hardware design achieves 1.25× and 4.27× smaller logic and BRAM size, respectively, and its energy consumption is approximately 10.37× lower than previous similar works with 43.95 fps as a real-time process under an operating frequency of 100 MHz on a Xilinx ZC702 FPGA.

Funder

Korean government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

1. Artificial Intelligence: A Survey on Evolution and Future Trends;Mijwil;Asian J. Appl. Sci.,2021

2. Deep Learning in Neural Networks: An Overview;Schmidhuber;Neural Netw.,2015

3. A tutorial survey of architectures, algorithms, and applications for deep learning;Deng;APSIPA Trans. Signal Inf. Process.,2014

4. Representation Learning: A Review and New Perspectives;Bengio;IEEE Trans. Pattern Anal. Mach. Intell.,2013

5. Bengio, Y. (2013, January 29–31). Deep learning of representations: Looking forward. Proceedings of the International Conference on Statistical Language and Speech Processing, Tarragona, Spain.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3