Efficient Neural Networks on the Edge with FPGAs by Optimizing an Adaptive Activation Function

Author:

Jiang Yiyue1ORCID,Vaicaitis Andrius2ORCID,Dooley John2ORCID,Leeser Miriam1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA

2. Department of Electronic Engineering, Maynooth University, W23 F2H6 Maynooth, Ireland

Abstract

The implementation of neural networks (NNs) on edge devices enables local processing of wireless data, but faces challenges such as high computational complexity and memory requirements when deep neural networks (DNNs) are used. Shallow neural networks customized for specific problems are more efficient, requiring fewer resources and resulting in a lower latency solution. An additional benefit of the smaller network size is that it is suitable for real-time processing on edge devices. The main concern with shallow neural networks is their accuracy performance compared to DNNs. In this paper, we demonstrate that a customized adaptive activation function (AAF) can meet the accuracy of a DNN. We designed an efficient FPGA implementation for a customized segmented spline curve neural network (SSCNN) structure to replace the traditional fixed activation function with an AAF. We compared our SSCNN with different neural network structures such as a real-valued time-delay neural network (RVTDNN), an augmented real-valued time-delay neural network (ARVTDNN), and deep neural networks with different parameters. Our proposed SSCNN implementation uses 40% fewer hardware resources and no block RAMs compared to the DNN with similar accuracy. We experimentally validated this computationally efficient and memory-saving FPGA implementation of the SSCNN for digital predistortion of radio-frequency (RF) power amplifiers using the AMD/Xilinx RFSoC ZCU111. The implemented solution uses less than 3% of the available resources. The solution also enables an increase of the clock frequency to 221.12 MHz, allowing the transmission of wide bandwidth signals.

Funder

MathWorks

Science Foundation Ireland

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3