Fault Diagnosis in Hydroelectric Units in Small-Sample State Based on Wasserstein Generative Adversarial Network

Author:

Sun Wenhao1,Zou Yidong1,Wang Yunhe1ORCID,Xiao Boyi2,Zhang Haichuan3,Xiao Zhihuai1

Affiliation:

1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

2. School of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650500, China

3. School of the Gifted Young, University of Science and Technology of China, Hefei 230052, China

Abstract

In the practical production environment, the complexity and variability of hydroelectric units often result in a need for more fault data, leading to inadequate accuracy in fault identification for data-driven intelligent diagnostic models. To address this issue, this paper introduces a novel fault diagnosis method tailored for unbalanced small-sample states in hydroelectric units based on the Wasserstein generative adversarial network (W-GAN). Firstly, the fast Fourier transform is used to convert the signal from the time domain to the frequency domain to obtain the spectral data, and the W-GAN is trained to generate false spectral data with the same probability distribution as the real fault data, which are combined with the actual data and inputted into the 1D-CNN for feature extraction and fault diagnosis. In order to assess the effectiveness of the proposed model, a case study was conducted using actual data from a domestic hydropower plant, and the experimental results show that the sample features can be effectively enriched via data enhancement performed on small-sample data to improve the accuracy of fault diagnosis, which verifies the effectiveness of the method proposed in this paper.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3