A 0.3 V, Rail-to-Rail, Ultralow-Power, Non-Tailed, Body-Driven, Sub-Threshold Amplifier

Author:

Centurelli FrancescoORCID,Della Sala RiccardoORCID,Scotti GiuseppeORCID,Trifiletti Alessandro

Abstract

A novel, inverter-based, fully differential, body-driven, rail-to-rail, input stage topology is proposed in this paper. The input stage exploits a replica bias control loop to set the common mode current and a common mode feed-forward strategy to set its output common mode voltage. This novel cell is used to build an ultralow voltage (ULV), ultralow-power (ULP), two-stage, unbuffered operational amplifier. A dual path compensation strategy is exploited to improve the frequency response of the circuit. The amplifier has been designed in a commercial 130 nm CMOS technology from STMicroelectronics and is able to operate with a nominal supply voltage of 0.3 V and a power consumption as low as 11.4 nW, while showing about 65 dB gain, a gain bandwidth product around 3.6 kHz with a 50 pF load capacitance and a common mode rejection ratio (CMRR) in excess of 60 dB. Transistor-level simulations show that the proposed circuit outperforms most of the state of the art amplifiers in terms of the main figures of merit. The results of extensive parametric and Monte Carlo simulations have demonstrated the robustness of the proposed circuit to PVT and mismatch variations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Technique to Design Ultra-Low Voltage and Ultra-Low Power Inverter-Based OTAs;2024 19th Conference on Ph.D Research in Microelectronics and Electronics (PRIME);2024-06-09

2. A 0.3 V OTA with Enhanced CMRR and High Robustness to PVT Variations;Journal of Low Power Electronics and Applications;2024-04-02

3. On the design of an ultra-low-power ultra-low-voltage inverter-based OTA;AEU - International Journal of Electronics and Communications;2024-04

4. Process and Simulation design of Silicon-On-Insulator (SOI) NMOS;2023 IEEE Nanotechnology Materials and Devices Conference (NMDC);2023-10-22

5. A 0.3V Rail-to-Rail Three-Stage OTA With High DC Gain and Improved Robustness to PVT Variations;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3