Abstract
Power saving has always been an important research direction in the field of microcontrollers. Dozens of low power technologies have been proposed to achieve the goal of reducing their power consumption. However, most of them focus mostly on lowering the consumption rate. It is well known that energy is the integral of power over time. Thus, our view is that both power and time should be carefully considered to achieve better energy efficiency. We reviewed some commonly used low power technologies and proposed our assumptions and strategy for improving energy efficiency. A series of test sets are designed to validate our hypotheses for improving energy efficiency. The experimental results suggest that time has no less impact on energy consumption than power. To support the operation of the processor, some peripheral components consume a constant amount of power regardless of the clock frequency, but the power consumption will be reduced when the processor enters low-power modes. This results in some interesting phenomena that are different from the usual thinking that energy can be saved by increasing processor clock frequency. For STM32F407 and Xtensa LX6 processors, this article also analyzes and calculates the minimum sleep time required for achieving energy saving based on our analytical models. Our energy efficiency strategy has been verified, and in some cases, it can indeed improve energy efficiency. We also proposed some suggestions on hardware design and software development for better energy efficiency.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献